HPC 创始人 Wolfgang Kainz

Dr. Kainz received his PhD Degree in Technical Science from the Technical University of Vienna, Austria in 2000. After working for the Austrian Research Center Seibersdorf, he joined the Foundation for Research on Information Technologies in Society (IT’IS) in Zurich, Switzerland, as Associate Director. At IT’IS, Dr. Kainz developed in-vivo and in-vitro exposure setups for bio-experiments. From Feb. 2002 to Feb. 2022, he was Senior Research Biomedical Engineer at the U.S. Food and Drug Administration (FDA) in the Center for Devices and Radiological Health (CDRH). In Feb. 2022 Dr. Kainz founded High Performance Computing (HPC) for MRI Safety and is currently HPC’s CEO and President.

Kainz于2000年获得奥地利维也纳技术大学技术科学博士学位。在奥地利研究中心Seibersdorf工作后,他加入位于瑞士苏黎世的社会信息技术研究基金会(IT IS),担任副主任。在IT’is, Kainz博士开发了生物实验的体内和体外暴露装置。2002年2月至2022年2月,他在美国食品和药物管理局(FDA)的设备和放射健康中心(CDRH)担任高级研究生物医学工程师。他于2022年2月创立了用于MRI安全的高性能计算(HPC),目前是HPC的首席执行官和总裁。


At FDA Dr. Kainz was the lead scientist for MRI safety related research in the Office of Science and Engineering Laboratories (CDHR/OSEL). He reviewed more than 1000 medical device submissions, has published over 200 peer-reviewed articles and book chapters, and has co-authored many FDA guidances. He has extensive regulatory experience related to 510k, PMA, and IDE submissions and was CDRH’s Senior Subject Matter Expert (SME) on Magnetic Resonance Imaging (MRI) safety. He is currently Senior Member of the Administrative Committee of the IEEE International Committee on Electromagnetic Safety and Member of many International Standards Committees.

在FDA, Kainz博士是科学与工程实验室办公室(CDHR/OSEL)核磁共振安全相关研究的首席科学家。审查了1000多份医疗设备提交,发表了200多篇同行评议的文章和书籍章节,并合著了许多FDA指南。其拥有与510k、PMA和IDE提交相关的丰富监管经验,是CDRH在磁共振成像(MRI)安全方面的高级主题专家(SME)。Kainz目前是IEEE电磁安全国际委员会管理委员会的高级成员,以及许多国际标准委员会的成员。


His experience is focused on the safety and effectiveness of medical devices and the safety of humans in electromagnetic fields. This includes novel computational life science methods for safety and effectiveness evaluations using functionalized anatomical models of the human anatomy; MRI safety; performance and safety of wireless technology used in medical devices; electromagnetic compatibility (EMC) of medical devices; dosimetric exposure assessments from DC to light; and novel methods to computationally assess the safety and effectiveness of new neuroprosthetics, e.g., electroceuticals, and therapeutic stimulation methods.

他的经验专注于医疗设备的安全性和有效性,以及人类在电磁场中的安全性。这包括新的计算生命科学方法,因为他的经验专注于医疗设备的安全性和有效性,以及人类在电磁场中的安全性。这包括使用功能化人体解剖模型进行安全性和有效性评估的新型计算生命科学方法;核磁共振安全;无线技术在医疗设备中的性能和安全性,医疗器械的电磁兼容性;从直流电到光的剂量暴露评估;以及通过计算评估新型神经义肢的安全性和有效性的新方法,例如,电药物和治疗性刺激方法。


In 2004 Dr. Kainz initiated the Virtual Family Project in co-operation with IT’IS and Prof. Ji Chen from the University of Houston. In 2010, he received the prestigious FDA Award of Merit for exceptional leadership in performance in addressing issues of compatibility of medical devices during MRI by applying transparently scientific research to device regulation. In 2016 Dr. Kainz initiated o2S2PARC (Open Online Simulations for Stimulating Peripheral Activity to Relieve Conditions, https://osparc.io/) in co-operation with IT’IS. o2S2PARC is one of the three integrative cores of NIH’s SPARC (Stimulating Peripheral Activity to Relieve Conditions) program’s Data Resource Center. The aim of o2S2PARC is to establish a comprehensive, freely accessible, intuitive, and interactive online platform for simulating peripheral nerve system neuromodulation and its impact on organ physiology in a precise and predictive manner. o2S2PARC’s goal is to make high-end biomedical simulation tools freely available in a user-friendly environment.

2004年,Kainz博士与IT IS和休斯敦大学陈吉教授合作发起了虚拟家庭项目。2010年,他通过将透明的科学研究应用于设备监管,在解决MRI期间医疗设备兼容性问题方面的卓越领导表现,获得了久负盛名的FDA Merit奖。2016年,Kainz博士与IT IS合作发起了o2S2PARC (开放在线模拟刺激周边活动以缓解条件)。o2S2PARC是美国国立卫生研究院(NIH) SPARC(刺激周边活动缓解条件)项目数据资源中心的三个整合核心之一。o2S2PARC的目标是建立一个全面、自由、直观、交互式的在线平台,以精确和预测的方式模拟周围神经系统的神经调节及其对器官生理的影响。o2S2PARCC的目标是让高端生物医学模拟工具在用户友好的环境中免费使用。



The latest ASTM Standard F2182-e02 “Standard Test Method for Measurement of Radio Frequency Induced Heating On or Near Passive Implants During Magnetic Resonance Imaging” states that “the measurements of RF-induced heating of an implant in the phantom may not be fully predictive of the heating of the device in a patient. Additional computational assessment may be necessary to predict the heating of the implant in patients for clinical settings.” Additionally, for many implants, the US FDA has asked to provide the estimated worst-case in-vivo heating. To assess the worst-case in-vivo heating computational modeling using anatomically correct models of the human anatomy is required. For multi-configuration devices it is difficult to assess which configuration presents the worst-case for RF-induced heating. Also, for complex shaped implants it is often not possible to predict the location of the worst-case heating on the implant’s surface. Computational modeling is ideally suited to assess which configuration of a multi-configuration device presents the worst-case for RF-induced heating and/or predict the location of the worst-case heating on the device surface. These services are provided by our partner High Performance Computing (HPC) for MRI Safety, LLC. We now offer computational modeling to assess implant and medical device safety in the MR environment.

最新的ASTM标准F2182-e02“磁共振成像中被动植入物上或附近射频感应加热测量的标准试验方法”指出“在体模中植入物的射频感应加热测量可能不能完全预测患者中设备的加热。”额外的计算评估可能是必要的,以预测植入物在临床环境中的加热。”此外,对于许多植入物,美国FDA要求提供估计的最坏的体内加热情况。为了评估最坏的体内加热情况,需要使用解剖学上正确的人体解剖模型进行计算建模。对于多配置的器件,很难评估哪种配置对射频诱导加热最不利。此外,对于形状复杂的种植体,通常不可能预测种植体表面最糟糕的加热位置。计算模型非常适合评估多配置设备的哪一种配置会出现射频诱导加热的最坏情况,并/或预测设备表面最坏情况加热的位置。这些服务由我们的合作伙伴高性能计算(HPC)磁共振安全有限责任公司提供。我们现在提供计算模型来评估植入物和医疗设备在磁共振环境中的安全性。